Mixing and Combustion in Dense Mixtures

by William A. Sirignano and Derek Dunn-Rankin

At very high pressures and densities, what is different and what is similar about the processes of – Injection and Atomization, Phase Change, Molecular Transport, Turbulent mixing, Oxidation, and Soot Formation - and the Abilities for Modelling and Measurement.

What do we mean by "high pressure"?

- High density is actually meant.
- In particular, density is so high and molecular distances so small that molecular force fields reach beyond the distance to neighboring molecules.
- Since molecular collisions become continuous rather than intermittent, the ideal gas law must be abandoned. A cubic equation of state is commonly used, e.g., van der Waals, Peng-Robinson, or Redlich-Kwong.
- Certain mixing rules are needed in the state equation applied to multicomponent fluids to determine two "constants" which actually vary over space and time with composition.

Two phases or a continuous fluid?

- It is widely and often wrongly assumed that a liquid injected into a surrounding gas at a subcritical liquid temperature but supercritical pressure for all components, may always be treated as a continuous fluid.
- The critical pressure of a mixture can be several times greater than the critical values for the components. Thus, critical pressure becomes a variable over the domain as composition varies and many problems must be viewed as transcritical with both subcritical and supercritical subdomains.
- Near the critical point, gas more easily dissolves in liquid and liquid more easily vaporizes; surface tension and energy of vaporization are reduced. Both phases must be considered as mixtures.
- Whether we have a distinct liquid phase with a distinct gas phase or one continuous fluid without interfaces, transport of mass will be important because of composition gradients. Heat transport will occur because of inherent temperature gradients.

$Hydrocarbon - O_2 \ mixtures \\$ Two-phase behavior at up to 7x" critical" pressures

Temperature (K)

Heptane

Computed by Albert Jordà Juanós

Octane ←

Decane

Mixture of decane, O_2 , N_2 , CO_2 , and H_2O at 4x the critical pressure of decane. Two phases clearly exist!!

A. Jordà Juanós

Surface Tension for near-critical behavior Value depends on all components

Surface tension depends strongly on liquid temperature, more modestly on pressure and ambient gas temperature.

Calculation by Delplanque & Lengsfeld -- Heptane-Nitrogen

Enthalpy of Vaporization

- -- Latent heat of vaporization applies exactly to single species systems. Enthalpy of vaporization is needed for multispecies systems.
- -- Enthalpy of vaporization decreases with increasing temperature and increasing pressure.

V. Yang & Co-workers

Pr = 0.8

650

6.0

Temperature, K

250

200

150

100

50

20.0

18.0

15.0

600

Enthalpy of Vaporization, kJ/kg

O₂/C₁₂H₂₆ System · Critical Mixing Point 700

A. Jordà Juanós

A. Jordà Juanós

- Density versus composition in a two-component decane-O2 mixture at subcritical temperature and a pressure supercritical for each component.
- A fuzzy zone in images may or may not have a discontinuous density.

Breakup of Injected Fuel Stream (aka atomization) at High Reynolds and Weber numbers

- The disintegration of the injected fuel stream determines the chamber mixture ratio distribution.
- The process also determines length scales for the resulting fuel droplets, ligaments, or 'blobs' thereby affecting rate controlling processes such as vaporization and mixing.
- Thus, without knowledge of these processes, we have no starting point for practical combustion analysis.
- Except for final stages, the atomization process is weakly dependent on surface tension and viscosity.
- Consequently, substantial similarities are found for homogeneous jets (e.g., air-into-air or water-into-water) and liquid jets into gas.

Round jets with 3D instabilities of axisymmetric vortex rings

Liepmann & Gharib (1992), water-into-water

Marmottant & Villermaux (2004) Co-axial flow of liquid with air

Ring Braid

Vorticity analysis shows common cause between the above side jets and the ligaments and lobes to the left.

Liquid transient, round jet into still air

Shinjo & Umemura (2010), NS-LS Re = 440 - 1470; We = 1270 - 14,100

Jarrahbashi & Sirignano (2014), NS-LS-PP Re = 1600; We = 230000; $\rho_1 / \rho_2 = 0.1$

- -- Cap forms on starting jet.
- -- Mass and size of cap increase.
- -- Instability causes shredding of cap.

time >

- -- Cones have azimuthal instability. Lobes form.
- -- Lobes stretch and tear under azimuthal instability.
- -- Ligaments form from torn rims.
- -- Capillary instabilities on ligaments.

Density ratio affects 3D instability but a qualitative similarity exists over a wide range. There is no basis for assuming large qualitative distinction in cone, lobe, and ligament formations for supercritical injection at low Mach numbers.

Turbulent Mixing

- Molecular transport remains important even with turbulent eddies enhancing mixing.
- Simple models developed first by Marble (1985), Karagozian & Marble (1986), Cetegen & Sirignano (1989, 1990) explain how molecular mixing and reaction occur in the strained flow within an eddy.
- The temporal and spatial behavior within a two-dimensional viscous vortex placed at the interface between reactants is analyzed. Diffusion across the strained material lines is determined.
- Mixing rates increase with both vortical strength (circulation) and diffusivities for heat and mass.
- Results can be shown for the mixing of two nonreacting fluid species and for the mixing with reaction of two reactants and a product.
- A mixedness parameter f(t) is used based on integrations over the volume eddy: $f(t) = \langle C_1 C_2 \rangle / [\langle C_1 \rangle \langle C_2 \rangle]$ where C_1 and C_2 are concentrations and $\langle \rangle$ implies an instantaneous volume average. With complete mixing f = 1; with no mixing, f = 0.

Two-dimensional Eddy Mixing, Cetegen & Sirignano Sc = 1, (D = v); $R = \Gamma/v$

A PDF is formed by averaging over x. P(C, y, t) is formed with mixing in core. Clearly, a dependence on mass diffusivity as well as vortex circulation results.

Mixedness Parameter

Mixedness enhancement Δf due to eddy circulation and strain increases with time, vortex strength, and mass diffusivity.

$$\mathbf{D} = \mathbf{v}$$
 ; $\mathbf{R} = \Gamma / \mathbf{v}$

Turbulent Mixing of O₃ and NO with isothermal chemical reaction

For reacting case, similar conclusions occur about dependence of mixedness on both vortex strength and molecular transport.

Molecular Transport

Water – dramatic effects near the critical point diminishing at more extreme conditions

Prandtl Number of Binary Mixtures of Noble Gases

- -- Complex behavior for mixtures, strongly nonlinear behavior.
- -- Variable mixture ratios over space and time gives highly non-uniform transport properties.
- -- Beware of simplifying assumptions.
- -- Sub-grid models become huge challenge.

Fig. 35. Prandtl number of noble gases and their binary mixtures at pressures of 2 and 7 MPa.

Challenges with Molecular Transport

- Transport properties of mixtures are complex.
- More information about properties for mixtures of combustion reactants and products is needed.
- Discontinuities with phase change are replaced by regions of steep gradients at supercritical conditions.
- Viscosity can decrease with increasing density causing higher Reynolds numbers, smaller scales of turbulence, and greater demands on sub-grid modelling.

Vaporization

A cold fuel droplet might be sub-critical for its local gas mixture.

- --A discontinuity in composition and density exists at the interface.
- -- For a hot environment, critical temperature occurs at some distance.
- -- Eventually, after some heating and vaporization, the critical surface reaches the interface. Phase distinction ceases.

Challenges with Near-critical Vaporization

- -- Enthalpy of vaporization and surface tension still exist, can be important, and more difficult to calculate because they are mixture-dependent.
- -- Gases dissolve in liquid and diffuse through liquid, creating a multicomponent liquid-phase diffusion problem.
- -- A quasi-steady gas-phase assumption becomes unreasonable; magnitudes of transport properties are similar in both phases which now must be considered unsteady.
- -- The droplet heating and vaporization problem becomes much more difficult.

Chemical Reactions

- While oxidation rates increase with density, transport rates decrease possibly modifying rate control in some situations.
- At high densities, new pathways must be evaluated.
- Can chemical kinetic theory be built around bimolecular and tri-molecular collisions for a dense gas with continual rather than intermittent collisions?
- Use fugacity, not partial pressure, in law of mass action for chemical equilibrium.
- How can kinetic laws without fugacity variables predict chemical equilibrium?

Summary of Key Knowledge

- It is high density, not high pressure!
- Molecular transport is always important in mixing and combustion problems, whether turbulent or laminar, continuous phase or two phase.
- Molecular transport is generally slower, more controlling at high density.
- Two-phases can exist at pressures well above the critical pressures of any component in a mixture.
- Substantial mixing occurs across phase interface; thus, fuzzy, blurry images need not imply a continuous phase.
- Length scales for composition variation and distribution of mixture ratio are vital characteristics for composition; thus, whether two-phase or continuous phase, "atomization" is important.
- For the first stages of atomization, vorticity dynamics is controlling while viscosity and surface tension are of little importance; thus, there is little difference amongst homogeneous jets (e.g., water-into-water,), liquid jets into gas, and continuous-phase high-density jets.
- Vaporization is a more complex problem at high densities and still is potentially rate-controlling.

Knowledge Gaps for High-density Flows

- Atomization in the near-critical two-phase domain.
- "Atomization" in the continuous fluid domain.
- Sub-grid (small length-scale) mixing models.
- Trans-critical vaporization models.
- Chemical pathways.
- Thermophysical and transport properties for MIXTURES at high density.

Thank You